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Field-induced vacancy localization in a driven lattice gas: Scaling of steady states
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With the help of Monte Carlo simulations and a mean-field theory, we investigate the ordered steady-state
structures resulting from the motion of a single vacancy on a periodic lattice which is filled with two species
of oppositely ‘‘charged’’ particles. An external field biases particle-vacancy exchanges according to the par-
ticle’s charge, subject to an excluded volume constraint. The steady state exhibits charge segregation, and the
vacancy is localized at one of the two characteristic interfaces. Charge and hole density profiles, an appropriate
order parameter, and the interfacial regions themselves exhibit characteristic scaling properties with system
size and field strength. The lattice spacing is found to play a significant role within the mean-field theory.

PACS number~s!: 05.40.2a, 68.35.Ct, 82.20.Mj
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I. INTRODUCTION

Systems in nonequilibrium steady states have attra
considerable interest in the past decade@1#. While presenting
a wealth of unexpected, intriguing phenomena, they are
quite poorly understood at a fundamental level. It is theref
natural to investigate simple model systems to identify
neric behavior, before turning to real systems which are u
ally far more complex.

A particularly interesting class of model systems is ba
on lattice-gas models, involving one or several species
particles whose motion is biased in a specified direction
the boundary conditions are open or periodic, the bias
drive the system out of a well-known equilibrium state in
novel nonequilibrium steady states which typically carry g
bal particle currents. Characteristic configurations, partic
particle correlations, and even phase transitions tend to
profoundly affected by the bias. Equilibrium phases can
suppressed, universality classes may change, and en
new transitions can emerge. For example, in a simple dri
Ising lattice gas with periodic boundary conditions@2#, the
bias suppresses one of the two ground states of the equ
rium system and fundamentally changes the universal p
erties of the Ising order-disorder transition@3–6#. In the
high-temperature phase, it induces generic long-range co
lations@7#, which characterize all models of this type. Oth
anomalies are observed belowTc @8#.

If the Ising symmetry is generalized@9,10# to include two
~or more! species of particles which respond differently
the drive, such systems will generically exhibit blockin
transitions, similar to traffic jams, in which one species i
pedes the motion of the other. These instabilities are gen
nonequilibrium transitions: they do not exist in the equili
rium limit and are controlled by particle density and bi
strength, rather than temperature. The ordered phases ex
characteristic spatial structures. Related real and model
tems include water-in-oil microemulsions in external elect
fields @11,12#, gel electrophoresis@13#, and traffic flow@14#.

In this paper, we focus on a three-state lattice gas con
ing of holes and two distinct species of particles driven by
external fieldE ~the bias! in opposite directions@15#. We
PRE 611063-651X/2000/61~1!/184~12!/$15.00
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name the two species ‘‘positive’’ and ‘‘negative,’’ in ana
ogy to charged particles in an electric field. The bias clea
breaks the Potts symmetry of the stochastic variable by
ing differently on each species. The only interaction betwe
the particles is an excluded volume constraint so that~i! each
site can be occupied by at most one particle and~ii ! particle-
particle ~‘‘charge’’! exchanges are not allowed. In the a
sence of other interparticle interactions, the temperature
pendence of the system, reflecting a coupling to a heat b
may be absorbed into the drive. Hence, the model is a h
field, high-temperature limit of a more complicated intera
ing system.

On a fully periodic square lattice, this system undergoe
blocking transition controlled by field strength and partic
density, separating a homogeneous phase from a spa
inhomogeneous one@15#. For small mass density and drive
the steady-state configurations are disordered so that
particle densities are homogeneous and a significant ch
current persists. In contrast, if a threshold mass densit
exceeded, the particles form a single compact strip transv
to the field while the rest of the lattice remains essentia
empty. The particle-rich region itself consists of two strip
also oriented transverse to the field, each dominated by
single species. In this phase, the particles impede one
other, due to the excluded volume constraint, so that
charge current is much smaller. Other ordered phases,
nonzero winding number around the lattice~‘‘barber
poles’’!, are observed in systems with rectangular aspect
tios @16#. An analytical solution in the frame of a mean-fie
theory @15# was presented in Ref.@17#. With a slight geo-
metrical modification, the model was also investigated
Foster and Godre`che @18#.

Here, we focus on a novel aspect of the blocking tran
tion, namely, alocalization phenomenonoccurring in sys-
tems near complete filling@19#. Thus, all lattice sites excep
a singlevacant one are occupied by particles. For simplici
we consider the symmetric situation, i.e., the particle nu
bers of each species differ at most by one. Starting from
disordered initial configuration, particles may exchange o
with the vacancy. As a result, the hole diffuses through
lattice. However, it doesnot perform a Brownian random
184 ©2000 The American Physical Society
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PRE 61 185FIELD-INDUCED VACANCY LOCALIZATION IN A . . .
walk, since the jump rate for a particle-hole exchange
pends on the charge and direction of motion of the parti
By virtue of the bias, positive and negative particles a
transported in opposite directions: The two particle spec
eventually segregate, provided the field exceeds a ce
threshold, corresponding to the transition line@15#. When the
steady state is reached, two strips have formed, filled
positive and negative particles, respectively. The hole it
ends up ‘‘trapped’’ on one of the two interfaces between
two ordered regions. Its location is the remnant of the em
region observed at finite hole density.

This problem, in both its static and dynamic aspects, is
example of a much wider ranging class of interacting rand
walk and defect-mediated domain-growth problems. T
hole is a random walker whose motion changes its envir
ment, but the environment reacts by determining the lo
jump rates. The vacancy plays the role of a highly mob
defect @20#, interacting with an otherwise immobile back
ground. The time evolution of the system, from an initia
disordered particle background to two ordered strips, pos
domain-growth problem@21#. Clearly, a good understandin
of the finalsteady statesand their associated scaling prope
ties is the first step in the analysis of the ordering proce
This study forms the subject of this paper. We report el
where on the fulldynamics@22#.

The key results of our study@23# can be summarized a
follows. First, we establish and confirm the characteris
scaling forms of the order parameter and the density profi
Further, focusing only on the interfacial~as opposed to the
fully ordered! regions of the profiles, we find thatboth inter-
faces are independent of the longitudinal system size and
their widths are controlled by the drive alone. These findin
are reflected in our mean-field theory. Our results are limi
in two ways: first, by the onset of the phase transition
small E, and second, by the breakdown of the naive c
tinuum limit for largeE.

This paper is organized as follows. In Sec. II, we give
precise definition of the microscopic model which underl
the Monte Carlo simulations. The relevant control and or
parameters are defined. To set the scene, we provide a
summary of earlier work. In particular, we discuss the blo
ing transition and its description in terms of a mean-fie
theory. In Sec. III, we investigate the scaling properties
the order parameter and the profiles, based on Monte C
simulations and the exact solution of the mean-field eq
tions. We conclude with a summary and some comment

II. THE MODEL: MICROSCOPICS AND MEAN-FIELD
THEORY

In this section, we provide the necessary background.
begin with the microscopic definition of the model, followe
by a summary of its phenomenology. We then provide
different perspective, by sketching the mean-field theory
its main results. We close with some technical details of
simulations.

Our model is defined on a two-dimensional square lat
of Lx3Ly sites with fully periodic boundary conditions
Each site, except one, can be occupied by a positive or n
tive particle. The remaining site is left empty. The resulti
configurations can be described by an occupation varia
-
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nx,y
1 (nx,y

2 ), taking the value11 if a positive ~negative!
charge is present at site (x,y) and zero otherwise. This en
forces the excluded volume constraint. There are no o
interactions between the particles. Turning to dynamics, p
ticles may jumponly onto the vacant site. In the absence
the external field, the vacancy exchanges randomly with
of its four nearest neighbors, independent of their charge
the direction of the move. This symmetry is broken by t
‘‘electric’’ field E, which is chosen to be uniform in spac
and time and directed along the positivey axis. For nonzero
E, jumps transverse to the field are still random; howev
parallel jumps are now biased: positive~negative! charges
jump preferentially along~against! E. Specifically, the ex-
change rate of the hole with a randomly chosen nea
neighbor is given by the Metropolis rate@24#,

W5min$1,exp~qEdy!%, ~1!

where q511 (21) for a positive~negative! particle and
dy50,6a is the change of they coordinate of the particle
due to the jump. This choice mimics the local energetics
charges in a uniform field. The lattice constanta will be set
to 1.

The dynamics of the model can be summarized by a m
ter equation@25# for the probabilityP(C,t) to find the sys-
tem in the configurationC5$nxy

1 ,nxy
2 % at time t:

]

]t
P~C,t !5(

C8
$W~C8→C!P~C8,t !2W~C→C8!P~C,t !%.

~2!

Here,W(C→C8) is the transition rate fromC to C8, speci-
fied by Eq. ~1!. For E,`, P(C,t) approaches a uniqu
steady-state solutionP* (C) in the limit t→`. For closed
boundary conditions,P* (C) follows from equilibrium statis-
tical mechanics, being the Boltzmann factor of a system
noninteracting charges in a uniform field. For period
boundary conditions, however, there is no uniquely defin
static potential forEÞ0 so that P* (C) is not a priori
known. Instead, it has to be found from an explicit soluti
of Eq. ~1!. Unfortunately, such solutions are available on
for a few, mostly one-dimensional, cases. Here, we o
know theE50 solution: the system is again in equilibrium
the particles diffuse randomly, andP* (C) is independent of
configuration, i.e.,P* }1.

The control parameters of this model are easily identifi
In addition to the driving fieldE and the system size
Lx3Ly , we can adjust the mass density

m[
1

LxLy
(
x,y

~nx,y
1 1nx,y

2 ! ~3!

as well as the net charge density of the system:

r[
1

LxLy
(
x,y

~nx,y
1 2nx,y

2 !. ~4!

Since the particle number of each species is separately
served, both densities are also conserved. For our case,
is always a single hole, so that the particle density
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m512
1

LxLy
~5!

depends on the system size. Since we focus on nearly e
numbers of positive and negative particles, the net cha
density is zero for systems with an odd number of sites
21/(LxLy) for an even number~the hole always takes th
place of a positive particle!. In the simulations, this smal
difference does not appear to lead to observable effects
like the case ofr5O(1) @26#.

A brief description of the blocking transition and the a
sociated phases will be helpful. For small values of drive a
total mass, the system is in the disordered phase, chara
ized by spatially uniform mass and charge densities. A s
nificant charge current flows in this phase. AsE or m in-
crease, a transition into an ordered phase, with spat
inhomogeneous densities, occurs. For systems with as
ratios near unity, each species of particles forms a comp
stable strip transverse to the electric field. The strip of po
tive charges is located directly ‘‘upfield’’ from the negativ
strip, so that the strips block each other, due to the exclu
volume constraint. The rest of the lattice remains essenti
empty. Clearly, the current is much smaller in this phase
the following, we will investigate the structure of these tran
verse strips when the empty region has shrunk to a sin
hole. We never observe strips with nonzero winding numb
they appear to be suppressed near complete filling.

To distinguish ordered and disordered phases, a suit
order parameter is needed. It is convenient to introduce
local hole andchargedensities:

fx,y512~nx,y
1 1nx,y

2 ! and cx,y5nx,y
1 2nx,y

2 . ~6!

Since our system does not develop inhomogeneities in tx
direction, it is natural to focus on the mass and char
densityprofiles:

f~y!5
1

Lx
(

x
fx,y and c~y!5

1

Lx
(

x
cx,y . ~7!

Following Ref.@15#, we define an order parameter

QL[
1

m Ly
K (

y
@c~y!#2L . ~8!

The angular brackets denote a configurational avera
Squaring the charge-density profile~which can have eithe
sign! prevents unwanted cancellations in the sum overy. In
the ordered phase,QL is O(1), while being only order
O„1/(mLx)… in the disordered phase. Roughly speakin
m LyQL counts the ordered rows transverse to the exte
field. For a perfectly ordered system,QL would be unity.
Clearly, other definitions of an order parameter are possi
In particular, the amplitude of the lowest Fourier compon
of eitherc(y) or f(y) is a much more sensitive measure f
a study of the transition line@4,19#. Here, however, our focus
is not on the transition but on the structure of ordered sta
so thatQL serves its purpose well.

Finally, let us add a comment on the transition line. E
lier simulation data@15# show that the threshold mass,mc ,
depends strongly onE and the longitudinal system lengt
ual
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Ly , but only weakly~if at all! on Lx . It can be first or second
order@17,19#, in different regions of parameter space. In o
case, where only a single hole is present, the mass dens
unity, to excellent accuracy. Therefore, the transition is c
trolled by E andLy alone.

We now turn to a brief summary of the theoretical ana
sis @15,17# which will be essential for the following. Even
though the master equation is just a linear equation, in p
tice it is not susceptible to theoretical analysis. To procee
continuum description is introduced, in the form of equatio
of motion for thecoarse-grainedhole- and charge-densit
profiles. Since the latter are both conserved quantities,
equations of motion take the form of continuity equation
They can be derived phenomenologically@15# or directly
from the master equation@19#. In the latter case, we firs
write a set of equations for the local averages,^fx,y& and
^cx,y&, on discrete space~with lattice constant 1! and then
take a naive continuum limit, e.g., we approximat

^ 1
2 (fx11,y2fx21,y)& by a first derivative with respect tox,

etc. A mean-field assumption is necessary since two-p
correlations must be truncated in order to obtain a closed
of equations. These can easily be written in general dim
sion d:

] tf~rW,t !5¹W •$¹W f1E fc ŷ%,
~9!

] tc~rW,t !5¹W •$f ¹W c2c ¹W f2E f~12f! ŷ%.

Here, the hole densityf and the charge densityc are func-
tions of thed-dimensional coordinaterW ~with associated gra-
dient¹W ) and timet. The drive appears in these equations v
its coarse-grained equivalent, theeffectivedrive E:

E~E!52 tanh~E/2!, ~10!

pointing along the unit vectorŷ. A diffusion constant has
been absorbed into the time scale. Derivatives higher t
second order have been neglected, anticipating smoo
varying solutions. The equations have to be supplemen
with periodic boundary conditions and the constraints on
tal mass and charge. For later reference, we also define
parameter

e[ELy , ~11!

which will play the role of a scaling variable.
Time-independent solutions of these equations reflect

tionary phases of the discrete model. The disordered ph
corresponds to a homogeneous solution, which is stable
respect to small perturbations providedm does not exceed a
threshold valuemH , given by

mH5@11~2p/e!2#/2. ~12!

The profiles in this phase are uniform. In our case, where
lattice is nearly completely filled, i.e.,m&1, we neede
&2p in order to find a stable homogeneous steady state.
an electric fieldE51.0, this implies rather small system
sizes (Ly,7).

To find a steady-state solution which corresponds to
transverse strip, we seek solutions that are inhomogeneo
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the y coordinate only. Equations~9! can be integrated once
with integration constants being the hole and the charge
rents. The former vanishes by symmetry at zero total cha
The latter, being nonzero in general, will be denoted byjE.
After expressingc in terms off,

c~y!5
f8~y!

Ef~y!
, ~13!

and rescaling the spatial variable toz[y/Ly , we obtain an
ordinary differential equation for the functionx[1/f:

x9~z!/e252 j x2~z!1x~z!21. ~14!

To satisfy the boundary conditions,x should be periodic
with period 1. Writingx in terms of a potential (1/e2)x9
52(d/dx) V(x), a further integration leads tox8
5eA2(U2V), where U is another integration constan
Unique solutions exist forj ,1/4 and appropriateU. Intro-
ducing the three rootsx1<x2<x1 , defined via 2@U
2V(x)#5(2 j /3) (x12x)(x2x2)(x2x1), the solution
@17# can be written using Jacobian elliptic functions@27#,

x~z!5x12~x12x2!sn2@ezA~ j /6! ~x12x1!#, ~15!

in the interval 0<z<1/2. The other half of the interval
1/2<z<1, is described by symmetry around the pointz
51/2. Thus, the hole density takes itsminimum at f(0)

51/x1 and its maximum atf( 1
2 )51/x2 . The third root,

x1, lies outside the physical domain. It is convenient to d
fine the parametersp andR:

p[~x12x2!/~x12x1!, ~16!

R[@4K~p!/e#2. ~17!

Here,K stands for the complete elliptic integral@27# and is a
function of p. Quantities of interest, such as the massm or
currentj, can be expressed in terms ofp andR:

124 j 5R2 ~12p1p2!, ~18!

12m5
@12R2~12p1p2!# P~nup!

2~11R1pR! K~p!
, ~19!

whereP(nup) is the complete elliptic integral of the thir
kind andn[3pR/(11R1pR). In principle, Eqs.~16! and
~19! can be inverted to give the physical parametersm ande
in terms ofR andp. In practice, it is easier to generate fun
tions of interest, e.g.,j (e,m) or the order paramete
QL(e,m), parametrically inp, which is allowed to range
from 0 to an upper limitp0(e),1 @17#. The upper limitp0 is
defined by the vanishing of the current,j (e,p0)50, and
plays a particularly important role in the context of th
study: According to Eq.~19!, the mass densitym tends to
unity asp approaches its upper limitp0(e). Thus, only val-
ues ofp nearp0 will be of interest here, since our focus is o
nearly filled systems. This observation is used later for
proximations.

The solution forx(z) generates both hole and charge de
sities:f51/x(z) andc5x8/(ex). These solutions describ
the ordered phase, i.e., particle-rich strips transverse to
r-
e.

-

-

-

he

field. For fixed mass, they depend only on the parametee
5E Ly and the variablez5y/Ly ; thus, these functions sat
isfy scaling in these variables. Moreover, the order param
QL is a function of e alone, since the spatial variable
integrated out. Here, however, we have to be rather m
careful: since our system, irrespective of its size, will alwa
contain only a single hole, the mass is inherently si
dependent. We will return to this issue in the next sectio

Since it is cumbersome to work with Eq.~15! directly, its
approximation fore@1 is very useful@17#. The sn function
can be replaced by a tanh function, and the argument sim
fies,

x~z!.x12~x12x2!tanh2~ez/2!. ~20!

As a result, a~weak! discontinuity appears in the first deriva
tive of x at the symmetry pointz51/2. This is unfortunate
for our purposes, sincez51/2 is also the location of the
maximum hole density. A different approximation, to be pr
sented in the next section, resolves this difficulty. We note
passing that Eq.~20! takes the form of the soliton in the
Korteweg–de Vries equation@28#.

Clearly, one should not expect such a mean-field theor
provide a quantitatively correct description of the phase tr
sition. However, it gives excellentqualitativeinsight into the
instability and the phase diagram@17#. Moreover, since our
interest here focuses on behaviordeeplyin the ordered phase
fluctuations do not play a significant role, and a mean-fi
theory should be very reliable. In fact, we will see that
main limitations do not arise from the neglect of correlation
but from taking a naive continuum limit.

We conclude this section with a few technical details
the simulations. The linear system sizes,Lx and Ly , range
from 16 to 48, withE in the range 0.2–1.2. A characterist
parameter set is that of our ‘‘reference system,’’ which w
appear in all scaling plots:E50.8 and Lx3Ly516324.
Thus, the mass density differs from unity by at most 0.4
so thatm51 is often an excellent approximation. The stat
tical error of the simulation results is of the order of 5% a
thus much larger. All initial configurations are random.
one Monte Carlo step~MCS!, a nearest neighbor of the va
cancy is chosen at random and an exchange is attem
with the rates~1!. Averages are computed from 100 indepe
dent samples for each choice of parameters. The approa
steady state is extremely slow@22# for larger system sizes
and sets real-time limits on our simulations. For example
system with 16324 sites atE50.8 requires approximately
53107 MCSs to reach the steady state. If we increaseLy
from 24 to 36, which is a factor of 1.5 in system size, t
required number of MCSs increases by roughly a factor
10.

While averaging, e.g.,QL , is rather simple, by first mea
suring QL for each sample and then averaging these d
some effort is needed to computeaveragedensity profiles
from the configurational data. Due to translational inva
ance, strips can be centered at anyy, and a careless averag
would ‘‘wash out’’ any inhomogeneities. To avoid this, w
first shift the ordered strips in the different samples in suc
way that they match before we average. A natural cho
would be to center all strips on, e.g.,y50, by normalizing
the phase of the largest wavelength Fourier component of
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FIG. 1. Snapshots of anLx3Ly system with
Lx516 andLy524 atE50.8, at different num-
bers of MCS:~a! 1, ~b! 103, ~c! 104, ~d! 105, ~e!
106, ~f! 107. The initially disordered system un
dergoes a charge segregation. In the orde
steady-state configuration, the two opposite
charged particles are separated by two differe
interfaces. Minus particles are colored black, pl
white, and the hole is gray.E field andy direction
point upwards.
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profile @19#. This is particularly useful when profiles ar
measured near the phase transition. Here, however, we
mostly take data deeply in the ordered phase, where the
is essentially trapped. Thus, for each sample we keep trac
they position of the hole and determine the maximum of t
hole density after a large number of MCSs. This maxim
marks the interface between the positively and negativ
dominated regions, the former located ‘‘up-field’’ from th
latter. The charge-density profiles from different samples
now shifted such that these maxima coincide, and avera
can be taken. Clearly, this procedure would run into diffic
ties if the interface were to wander significantly while t
data for the hole-density profile are being accumulat
However, for the choices of the control parameters con
ered here, this does not appear to present major prob
since fluctuations of the interface position are rather sm
Moreover, they are very slow; thus, the time scales o
which the interface remains well localized are sufficien
large to determine the maximum of the hole density v
precisely.

III. SCALING BEHAVIOR IN THE STEADY STATE

As an introduction to the discussion of scaling properti
we illustrate the process by which the system approaches
steady state. A series of snapshots, taken at different
times, first demonstrates why the dynamics is so slow,
second already suggests one of the key hypotheses of
work, namely, that the steady-state interfaces are well s
rated from one another. Figure 1 shows this series for
reference system. The negative~positive! particles are col-
ored black~white! and the empty site is marked gray.
coordinate system is introduced in the usual way, i.e., thx
direction lies horizontal, they direction vertical, and theE
field points upwards.

Starting from a random configuration@Fig. 1~a!#, the sys-
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tem remains disordered for early times@Fig. 1~b!#. Eventu-
ally, by allowing positive~negative! particles to move pref-
erentially upwards~downwards!, the hole begins to segrega
the two species. The early stages of this process are disc
ible in Fig. 1~c!, where an interface between regions of o
posite charge begins to develop. The position of this int
face is determined by random fluctuations in the syste
Clearly, due to the periodic boundary conditions, a seco
interface must also form. After 105 MCSs @Fig. 1~d!#, the
segregation of charges, and hence the two interfaces,
quite apparent. Due to the drive, the hole moves rapidly
the top~bottom! in regions of predominantly negative~posi-
tive! charge. Thus, it tends to remain near the interface wh
separates positive particles on the top from negative one
the bottom@the lower interface in Figs. 1~d!–1~f!#. In con-
trast, it is rapidly driven away from the opposite interfac
We will refer to the former~latter! interface as the ‘‘down-
stream’’ ~‘‘upstream’’! one. The two interfaces are we
separated, for this choice of parameters, and exhibit ra
different morphologies: The downstream interface is qu
sharp, while the upstream interface appears to be much m
diffuse. To increase the degree of order in the system,
hole has to travel to the upstream interface before it
move another charge to a preferred position. Since this
quires a series offield-suppressedjumps, the approach to th
final steady state is very slow. As the ordered domain s
rounding the downstream interface grows, the hole beco
strongly localized. A quantitative analysis of this orderin
process will be provided elsewhere@22#.

A picture of a typical steady-state configuration is sho
in Fig. 1~f!. To characterize these structures, we investig
three characteristic quantities: the order parameterQL ,
which provides a global measure of order, as well as
average hole- and charge-density profiles, which carry m
detailed information about ordered configurations. All thr
of them are easily computed within the mean-field theory,
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we shall presently see. Since the spatial inhomogene
form along they direction, the system sizeLx is not expected
to play an important role. Simulations confirm this, provid
the aspect ratioLx /Ly does not exceed a certain thresho
value, which is at least 6 in our case. For larger aspect ra
strip configurations with nonzero winding number may be
to form, introducing anLx dependence into the problem@16#.
These, however, are not the subject of the present study

A. The order parameter

We begin by calculating the order parameterQL in the
mean-field approximation. Starting with the definition~8!,
we first express it within the continuum theory. Clearly, t
summation over the sites in they direction should be re-
placed by an integration. Using the rescaled variablez
5y/Ly and exploiting the symmetry of the profiles arou
z5 1

2 , we obtain

QL5
2

mE
0

1/2

@c~z!#2 dz5
2

m e2E0

1/2x82

x2
dz. ~21!

In the last equality, we have recastc in terms of x. To
proceed, we change integration variable, fromz to x. The
limits of the integral are transformed tox(0)5x1 and

x( 1
2 )5x2 , where we recall that these are zeros ofU

2V(x). With x85A(2 j e2/3) (x12x)(x2x2)(x2x1),
we find

QL5
4 j

3m
~Q11Q21Q31Q4!, ~22!

where we have introduced

Q152E
x2

x1 x

x8
dx, ~23!

Q25~x1 x2x1!E
x2

x1 1

x2x8
dx, ~24!

Q35~x11x21x1!E
x2

x1 1

x8
dx, ~25!

Q452~x1x21x1x11x2x1!E
x2

x1 1

xx8
dx. ~26!

The last two integrals are evaluated easily, giving 1/2 a
(12m)/2. The first two integrals can be reduced to compl
elliptical integrals of the first, second, and third kind.

The resulting expressions can be expressed in more c
pact form, using the parametersm, p, andR @see Eqs.~16!
and ~17!#. For that purpose, it is helpful to write the thre
roots in terms ofp andR:

x15
2@11R ~p22!#

12R2 ~12p1p2!
, ~27!
es

s,

d
e

m-

x25
2@11R ~122p!#

12R2 ~12p1p2!
, ~28!

x15
2@11R ~11p!#

12R2 ~12p1p2!
. ~29!

Then, we invoke Eq.~18! to replace the currentj and Eq.
~19! to eliminate the elliptic integral of the third kind. Col
lecting, we obtainQL ,

QL512
1

2m H R~p22!1113R
E~p!

K~p!J . ~30!

E andK are the complete elliptical integrals of the first an
second kind@27#. According to Eqs.~17! and ~19!, QL is a
function of p ande only, which can be generated paramet
cally in p.

So far, our discussion is valid for arbitrary massm. Let us
now consider the case of a single vacancy, namelym51
21/(LxLy), which corresponds to a system near compl
filling. Considering only the leading terms in an expansion
powers ofd[1/(LxLy), the left-hand side of Eq.~19! is just
d. As a consequence, the factor 12R2(12p1p2) on the
right-hand side isO(d), and so is the currentj, given by Eq.
~18!. Recalling that the upper limitp0 of the p range is de-
fined by the conditionj „e,p0(e)…50, we conclude thatp
5p01O(d) for our case. Tracking the effect of the finite
size corrections through our preceding calculations, we fi
that x1 , x1 , and x2 are all O(LxLy), by virtue of their
common denominator. To leading order, the hole densityf
51/x is thereforeO(d) as one might have anticipated. I
contrast, the charge density isO(1), due to Eq.~13!. Sinced
is very small in our study, all but the leading terms will b
neglected in the following. Then,QL becomes a function o
e alone. This prediction is easily checked by Monte Car
simulations.

In this spirit, we invoke Eq.~18! for j 50 and rewrite it as
e25@4K(p0)#2(12p01p0

2). Now, e can be computed nu
merically for a set of discrete values ofp in the interval@0,1#.
The values ofQL(e,m51), derived in this way, are show
as the solid theoretical curve in Fig. 2.

FIG. 2. Plot of order parameter vse5ELy for different square
system square sizes (20<Lx5Ly<35) and different electric fields
(0.2<E<1.0). The upper line shows the result ofQL from mean-
field theory, the lower line is its approximation 126/e.



190 PRE 61M. THIES AND B. SCHMITTMANN
FIG. 3. Scaling plot of the hole
~a! and charge~b! densities.Ly

andE vary such thate518.24 re-
mains constant.Lx516 is fixed.
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For large e@1, the approximationsR.A124 j and p
.1 are valid. Within the same approximation,j can be re-
placed byj 5exp(2me/2) @17#, which is vanishingly small.
With m51, QL simplifies to

QL512
6

e
. ~31!

This gives rise to the dashed curve in Fig. 2. Comparing
approximation to the exact mean-field result, we see
both expressions are indistinguishable fore.18. For smaller
values ofe, the approximation underestimates the order
rameter slightly.

Turning to simulation results, we first test the expec
scaling in e. Figure 2 shows data for the order parame
QL , for different square systems~ranging from 20320 to
35335) and different electric fields (E50.2–1.0!, plotted
versuse. Each data point is an average over 30–50 samp
The size of the error bars is about 0.05 units. Within
accuracy of our data, all points lie on the same curve, co
sponding to the scaling function. The latter appears to t
towards zero fore&6. This is consistent with the stabilit
limit of the inhomogeneous solutions, Eq.~12!, which im-
plies that form'1, an inhomogeneous solution can ex
only if e.2p. Once the transition to the homogeneo
phase has occurred, the order parameter is of the orde
1/Lx<0.05. With increasinge, the order parameter ap
proaches its upper limit, i.e., 1.

It is remarkable, however, that the largee approximation
produces a better fit to the simulation data than the ex
mean-field result, especially fore,10. It is conceivable tha
the intrinsic errors of the mean-field theory approach are p
tially compensated by the largee limit. Further studies are
required to test this possibility. Focusing on the regione
.15, the simulation results all lie about 0.02 units above
theoretical curve. While these deviations are within the er
bars of the data, they are too systematic to be ignored. Cl
scrutiny reveals that the results of the large system sizes
to be closer to the theoretical curves than those for sm
system sizes, which indicates that the differences betw
simulation and mean-field results are at least partly due
finite-size effects. We will return to this question at the e
of Sec. III C.

B. Charge and hole density profiles

While the order parameter carries only global informati
about spatial inhomogeneities in the system, the charge-
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hole-density profiles retain far more detail, allowing us
distinguish the oppositely charged domains and their in
faces. Based on the mean-field theory, we expect these
sities to satisfy scaling ine andz. This is borne out by the
simulation results, which are presented in this section.

In order to exhibit the scaling of the densities, four diffe
ent parameter sets (E,Ly) are simulated, generating 10
samples for each. The system lengthLy and the electric field
E are varied in such a way as to keep the parametere con-
stant at 18.24. To avoid unwanted cancellations, we shift
maximum of the hole density in each run toz50 before
averaging. The charge profiles are shifted accordingly. Th
z covers the interval (20.5,0.5), and the ‘‘downstream’’ in-
terface is centered at the origin. In addition, we normalize
hole profile in such a way that all profiles enclose the sa
area.

A comment on this normalization is in order. Recallin
the constraint on the total density, we have 12m
51/(LxLy)5(1/Ly)*0

Lyf(y)dy for a single hole. Thus, we

have 15Lx*0
Lyf(y)dy5LxLy*0

1f(z)dz so thatLxf(y) can
be interpreted as theprobability densityfor finding the hole
in row y. Similarly, LxLyf(z) is the probability density for
finding the hole at positionz. Thus,normalizedplots for the
hole density show the associated probability density, and
area under each curve is just 1. Moreover, sincef(z)
5O@1/(LxLy)#, according to the finite-size analysis in Se
III A, the normalizedquantity depends onz ande alone. No
such normalization is required for the charge density, sinc
is already ofO(1) in the system size.

To test for the anticipated scaling ine andz, Monte Carlo
data for the~normalized! hole density profile are presented
Fig. 3~a!, and the charge-density profile is shown in F
3~b!. Since all data points collapse onto the same charac
istic scaling curve for hole and charge profiles, respective
the theoretical prediction is clearly confirmed.

Beyond demonstrating scaling, these plots provide a m
quantitative characterization of the spatial structures in
system. Sincee here is the same as in Figs. 1~a!–1~f!, Fig.
3~b! shows the associated steady-state charge-density
files. We can see clearly that the particles are ordered in
regions, filling the whole system. Each of these regions c
sists essentially of one species. They are separated by
interfaces. The maximum of the hole density lies at the c
ter (z50) of the much sharper downstream interface wh
the field tends to localize the hole, while the minimum of t
hole density marks the more diffuse upstream interface.
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FIG. 4. Plot of the hole~a! and
charge ~b! densities for a range
of Ly . Lx516 and E50.8 are
constant.
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To explore the size and field dependence of our sys
further, it is interesting to vary the system lengthLy and the
electric field E independently,not keepinge constant. Of
course, given the excellent data collapse of Figs. 3 and 4
cannot expect global scaling over the wholey range. We will
see, however, that certainregionsof the profiles, centered on
the two interfaces, still scale.

We first report simulations at constant electric fieldE
50.8 and transverse sizeLx516, increasing the longitudina
system sizeLy from 20 to 32 in steps of 4. The~normalized!
hole densities observed in these simulations are summa
in Fig. 4~a!, plotted versusy rather thanz5y/Ly .

We observe that the graphs associated with differentLy
span different ranges ofy, but are otherwise essentially in
distinguishable in the central region. Thus, the width and
maximum of the hole density, and hence the width of
‘‘downstream’’ interface, are not affected by changes in
longitudinal system size when plotted versus they variable.
We conclude therefore that the characteristics of this in
face are controlled by the electric field alone~cf. the next
section!.

This behavior is also borne out by the charge-density p
files, Fig. 4~b!. According to Eq. ~13!, the steady-state
charge- and hole-density profiles are related viac(y)
52f8(y)/@Ef(y)#. Thus, the charge densities near t
‘‘downstream’’ interface should also be independent ofLy ,
in agreement with Fig. 4~b!. On the other hand, the region
of nearly constant charge density must broaden to reflect
increasing system size. Thus, the profiles do not collaps
the edges of the plot. However, the similarity of their for
near y56Ly/2 suggests that theupstreaminterface might
scale also, provided the profiles are shifted appropriat
This is indeed confirmed by the simulations@cf. Fig. 5~b!
below#. Thus, the slopes and widths of the profiles, nearboth
interfaces, are independent of system size. The remai
m
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effect ofLy is very simple and can be observed in Fig. 4~b!:
Outside the interfacial regions, the charge densities satu
very rapidly at61, and these saturated regions expand
contract to accommodate the selected system size.

It is now quite apparent how the profiles should scale
Ly remains fixed andE is varied instead. Since the interfaci
regions are independent ofLy , but scale inz and e, they
must depend ony through the combinationEy. To check this
conjecture, we fix the system size atLx3Ly516324, while
the electric field increases from 0.4 to 1.2 in steps of 0
Figure 5~a! shows the~normalized! hole-density profile plot-
ted versus the scaling variableEy. The data collapse in the
interfacial region is excellent, except for the smallest fie
E50.4. This value ofE, however, is rather close to the tran
sition line where the mean-field theory is likely to brea
down. Focusing on the largerE’s, it is apparent that the
width of the downstream interface scales as 1/E. Turning to
the charge densities, Eq.~13! implies thatc(y) is also a
function ofEy near the downstream interface. This is inde
confirmed by simulations. To illustrate the scaling of t
upstreaminterface, we present Fig. 5~b!: Here, all profiles
have been shifted byLy/2 in order to center the upstream
interface at the origin. Clearly, this interface also scales
the variableEy. For completeness, we note that the on
profile that does not reach saturation is the one for the sm
estE, since this value is quite close to the phase transitio

Let us summarize the key findings of the simulation
First, the data for each profile collapse onto a single,global
scaling curve if plotted as a function ofz5y/Ly at constant
e. Moreover, focusing only on the interfacial~as opposed to
the saturation! region, we find thatboth interfaces are inde-
pendent ofLy and that their widths scale as 1/E, provided we
are not too close to the transition to the homogeneous ph
In the next section, we will consider these findings in light
our mean-field theory.
f

FIG. 5. Plot of the hole~a! and

charge~b! densities for a range o
E, vs Ey. Lx516. Note that in~b!
y50 corresponds to theminimum
of the hole density ~upstream
interface!.
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C. Independent interface approximation

In the following, we present an analytical description
the interfaces, which is then tested by detailed Monte Ca
simulations. We will focus in particular on the charge de
sity since it directly determines the order parameter. First,
invoke the ‘‘large e ’’ approximation @17# to describe the
upstream interface. A complementary approximation, invo
ing a different version of the largee limit, is then developed
to describe the other~downstream! interface. The key as
sumption here is that the two interfaces areindependentof
one another, i.e., they are separated by sufficiently la
‘‘saturation’’ regions, which are entirely filled by either pos
tive or negative charges, so thatc561 there. Such profiles
result providede*18, as demonstrated by Figs. 3~b!, 4~b!,
and 5~b!. The associated hole densities are approxima
zero except near the downstream (z50) interface@cf. Figs.
3~a!, 4~a!, and 5~a!#.

Returning to the largee limit of our mean-field theory, we
recall thate@1 is equivalent top→1. In this limit, we may
replace the Jacobian elliptic function sn by tanh@17#. In
practice, this is already a good approximation fore>15. It is
easy to check that this results in~mean-field! profiles with
vanishing hole densities near the upstream interface
saturated charge densities between the interfacial regi
Thus, this limit is consistent with our assumption of ‘‘ind
pendent’’ interfaces.

To describe the upstream interface, we start from Eq.~20!
for largee:

x~z!5x12~x12x2!tanh2~ez/2!. ~32!

Note that, due to the symmetry ofx, this equation holds for
the interval (21/2,1/2). At z50, x takes its maximum, so
that this is a good approximation for the upstream interf
where f51/x is minimal. The largest deviation from th
exact mean-field solution occurs at the boundaries, i.e.,
the downstream interface, since this approximation viola
the periodic boundary conditions:x8(21/2)Þx8(1/2). The
current is exponentially suppressed for largee, i.e., j
>6 e2me/2, andx1 andx2 can be expressed in terms ofj,
namely, x12x2>3/(2j )A124 j and x1>1/(2j)(1
12A124 j ) @17#. The hole and charge densities are no
easily derived. In particular, recalling thaty5Lyz, we can
already read off the widthju of the upstream interfacial re
gion: ju52Ly /e52/E, which is consistent with the data
More specifically, we can compute the charge density fr
Eqs.~13! and ~32!. Neglecting terms ofO( j ), we find

c~y!52tanh~E y/2!. ~33!

At the boundaries, Eq.~33! results inc(6Ly/2)→71 in the
largee limit, which confirms that this approximation violate
the boundary conditions. However, it does describe the in
facial region neary50 very well. Rather than quoting th
hole density explicitly, we only note that it is very small ne
the origin, namelyO( j ).

In order to capture the downstream interface, we int
duce another method. Sincej >0 to excellent accuracy fo
large e @17#, we return to the mean-field equations~9! and
integrate them, settingboth integration constants, i.e., hol
and charge current, to zero. This is actually an equilibriu
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approximation, as we shall discuss below. The simulat
data suggest the boundary conditionsf(6Ly/2).0 and
c(6Ly/2).61. In this approximation, the downstream in
terface, corresponding to themaximumof the hole density, is
localized at the origin. Written in terms of the variabley, Eq.
~14! for x simplifies to

x9~y!/E 25x~y!21. ~34!

This is easily solved, subject to the specified boundary c
ditions:

x~y!511ccosh~Ey!. ~35!

To ensure that the hole density is strictly positive, we d
mandc.0. This constant can be determined explicitly fro
the mass constraint, namely 15Lx*2Ly/2

Ly/2 f(y) dy, from

which

2
LxLy

eAc221
arccosS 1

c
D 51 ~36!

in the largee limit. In our simulations,Lx is at least 16 and
E at most 2, so thatc.24 follows. Thus, we can expand Eq
~36! for largec, resulting in

c.
LxLy

e
p. ~37!

In fact, this approximation is already very good forc.4.
Next, we compute the charge density,

c~y!5
sinh~Ey!

cosh~Ey!1c21
.tanh~E y!. ~38!

The last approximation is very accurate sincec.24. Again,
we can read off the width of the interfacial region,jd
51/E. Similar to the downstream interface, the width sca
with 1/E, in agreement with the data. Intriguingly, howeve
our approximation is capable of reproducing the observa
that the downstream interface isnarrower than the upstream
one. Whether the measured widths differ by a simple fac
of 2, as predicted by our calculation, awaits a more qua
tative comparison with Monte Carlo data.

In contrast to the upstream interface,f is nontrivial here:

f~y!5
1

11ccosh~Ey!
.

1

c cosh~Ey!
, ~39!

confirming the width of the downstream interfacejd51/E.
Away from the origin, the hole density again decays ve
rapidly, to match with its value near the upstream interfa

Before turning our focus on a comparison of these res
with computer simulations, a last remark on the approxim
tion of the downstream interface is in order. Imposing bric
wall ~i.e., closed! rather than periodic boundary condition
the approximation taken here~setting the current to zero!
becomes exact. Moreover, the brick-wall system is anequi-
librium one. The hole will accumulate positive~negative!
charged particles at the top~bottom! of the system, thus es
tablishing our boundary conditionc(6Ly/2)→61. Clearly,
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FIG. 6. ~a! Plot of the hole density~1! for Lx516, Ly524, andE50.8. The dashed line denotes the approximation Eq.~38!, for the
downstream interface, forc565.58. Note that the hole density is vanishingly small near the upstream interface.~b! Plot of the charge density
~1! for Lx516, Ly524, andE50.8. The dashed and solid lines are the two interface approximations, Eqs.~33! and ~38!, matched at
y564.
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only one nontrivial interface remains in this case, name
the downstream one. In the steady state, the bias traps
hole near this interface. This fixes the boundary condit
f(6Ly/2)→0. In this sense, our approximation for th
downstream interface is equilibriumlike.

Returning to our model, we have obtained two comp
equations~33! and ~38! for the charge density. Sincec(y)
.61 between the interfaces, to excellent accuracy,
whole system can be described in terms of the two interfa
provided we match them appropriately. As an example, F
6~b! shows a 16324 system withE50.8. The data points
result from a Monte Carlo simulation while the solid an
dashed lines reflect our two interface approximations, E
~33! and ~38!, respectively. For the narrower interfac
~downstream, in the center!, the match is nearly perfec
while for the wider interface~upstream, at the edges of th
figure! the slope of the tanh function is slightly too sma
compared to the computer simulation. The agreement is n
ertheless remarkable.

Next, we compare the approximation for the hole dens
with MC results. Here, we use Eq.~39! for the whole system
since the hole density is vanishingly small except in the c
tral region of the downstream interface. Simulation data a
the analytic approximation forf are presented in Fig. 6~a!.
A small quantitative discrepancy is observed aty50, i.e.,
the center of the downstream interface, whereas all other
points are remarkably well reproduced by Eq.~39!.

Given the results for the interfaces, we finally return
the order parameterQL . Here, we will see that the indepen
dent interface approximation provides us with a very int
tive picture for the approximate form~31!. Since the steady
state exhibits complete order in one region of positive a
another one of negative particles, the deviation ofQL from
unity originates near the interfaces. We can easily comp
the contribution toQL for each interface separately, usin
Eq. ~21!. The wider ~upstream! interface reducesQL by
4/(ELy), while the narrower downstream interface lowers
by 2/(ELy), resulting in a netQL5126/(ELy), in agreement
with Eq. ~31!. Thus, this form simply tallies up the contribu
tions of two well-separated interfaces, while the fully sa
rated regions give rise to the 1.

While these data for the scaling of order parameter
profiles are very convincing, the question of their range
validity must be raised. First, we should anticipate a bre
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down of mean-field theory near the onset of the transition
the uniform state. This limits our analysis toe*6, corre-
sponding to, e.g.,E*0.25 for a system withLy524. For
larger values ofe ~but below an upper limit to be discusse
shortly!, scaling ine and z is observed to hold. In order to
have well-separated interfaces, we also requiree*15. Be-
yond this threshold, the interfacial regions of the profil
scale very cleanly with 1/E.

In addition to a lower limit, there is also an upper limit fo
our analysis. Recalling Eq.~10!, the effective drive is
bounded:E<2, due to the tanh function, even for very larg
values of the microscopicE. Thus, within our mean-field
theory, the interfacial widths cannot become arbitrar
small. For example, for the narrower downstream interfa
jd<2 in units of the lattice spacing, andc(62)560.96,
from Eq. ~38!. Thus, mean-field profiles requireat leastfour
lattice spacings to interpolate between the fully saturated
gions. In contrast,measuredcharge-density profiles for larg
E ~e.g.,E52.0) jump from21 to 11 over just two lattice
spacings. Such profiles are so sharp that our continuum l
fails to reproduce them: they can hardly be conside
smoothly varying functions. As a result, the mean-fie
theoryunderestimatesthe order parameter for large values
E, which explains the systematic deviations of the sma
system sizes in Fig. 2. For example,e520 in a 20320 sys-
tem corresponds toE51.2, where this phenomenon is a
ready noticeable. At a purely phenomenological level,
can extend the validity of our mean-field description if w
retain theform of our equations~9! but replace the effective
drive E by the microscopic fieldE everywhere. Mathemati-
cally, this requires keepingexplicit track of the lattice con-
stanta, followed by taking thehydrodynamiclimit @29#, i.e.,
a→0 at fixed drive, system size, and mass. Since the lat
constant appears in the rates, Eq.~1!, the effective drive
takes the formE52 tanh(Ea/2). In the original discrete ver-
sion of Eq.~9!, the lattice constant appears in terms such

E^ 1
2 (fx1a,y2fx2a,y)&. In the limit of vanishinga, this ex-

pression simplifies toEa2]f/]x. Since the diffusive terms
~e.g.,“2f) also generate a factora2, the latter can be ab
sorbed into the time scale so that we recover Eq.~9!, with E
replaced byE. Thus, all of our analytic results carry ove
providedE takes the place ofE everywhere@30#. With this
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modification, the agreement of MC data and analytic desc
tion extends to the largest fields studied, namely,E52.0.

To some extent, even the measured profiles do not re
duce the actual sharpness of the data fully. Since the do
stream interface can form at an arbitrary location within
lattice, one should allow fornonintegershifts, i.e., shifts be-
tween 0 and 1 (a51) modulo multiples of the lattice spac
ing, in order to produce accurate averaged data. This sub
is not accounted for in our simulations, as seen from
discussion at the end of Sec. II. Thus, the actual interfac
slightly smeared out when we average profiles by superp
ing the maxima of the hole density. Details can be found
Ref. @23#. To summarize briefly, our mean-field theory,
the form of Eqs.~9!, gives excellent results providede*6
and E<1.0. If a systematic hydrodynamic limit is consid
ered, the validity extends further, at least toE<2.0.

IV. CONCLUSIONS

In this work, we focused on the scaling behavior of o
dered steady states in a simple lattice model. A fully perio
lattice is filled with equal numbers of positive and negat
‘‘charges,’’ except a single site that remains empty. An e
ternal ‘‘electric’’ field, applied along one of the lattice axe
biases the motion of the particles. The dynamics is vacan
mediated in that only vacancy-charge exchanges are allow
The particles interact only through an excluded volume c
straint.

This system develops spatial structures ifELy , i.e., the
product of drive and system size along the field directi
exceeds a critical value. Then, a charge-segregated strip
ented transverse to the field, forms around the hole
grows until it fills the whole system. The two opposite
charged regions are separated by two interfaces with dis
characteristics: One interface, the ‘‘downstream’’ one,
tracts the hole; the other~upstream! repels it strongly. This
asymmetry finds its origin in the charge separation indu
by the external field: while the hole moves rapidlyalong the
field in the negative region, its preferred direction is revers
in the positive region.

Continuing earlier studies@15,17#, we investigate the scal
ing properties of an appropriate order parameter and the
and charge densities, as the external control parameteE
and Ly vary. The transverse system sizeLx plays no role
except in finite-size corrections. Monte Carlo data are co
a
s.
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pared to the predictions of a mean-field theory in which
drive appears through the effective parameterE
[2 tanh(E/2). The agreement is excellent, providede
[ELy*6 so that we are in the ordered phase, andE<1.0 to
maintain fairly smooth profiles. The transverse system s
Lx plays no role except in finite-size corrections. In partic
lar, we can describe the charge-density profiles, with rema
able accuracy, in terms of two noninteracting interfac
separated by perfectly ordered regions. The interfaces th
selves are determined by the drive alone, independent of
tem size, and their widths scale with 1/E. For fields E
.1.0, the data show very steep slopes in the interfacial
gions, which cannot be captured correctly by a naive c
tinuum limit. Remarkably, the mismatch between data a
mean-field theory is significantly reduced if we substitute
microscopicfield E for the effectiveE in the ~mean-field!
interface approximations. The emergence of the latter can
understood in the limit of vanishing lattice constant. W
should caution, however, that this limit must also eventua
break down since it does not commute with the limitE
→`. Since the details of the continuum limit appear to pl
a key role here, it would be interesting to analyze thediscrete
precursor of Eq.~9!. In this case, the natural paramet
should beE alone.

Another interesting question concerns the character of
interfaces when a finite density of vacancies is present
this case, the downstream interface ‘‘splits’’ into two halve
separated by an empty region. Clearly, in addition toE and
Ly , the overall massm now enters the criterion for having
independent interfaces. Provided the appropriate conditio
met, however, we expect that the interfacial profiles still d
pend only onE: local structures appear to be controlled e
tirely by the drive.

Finally, our study paves the way for the exploration
dynamic phenomena in driven two-species models. Hav
established the scaling properties of thefinal steady states
work is in progress to investigate how theydevelopfrom
random initial conditions@22#.
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